Leica GMP101 Mini-prisma

El Leica GMP101 en soporte metálico ofrece una gran precisión de posición y se guarda cómodamente en su bolsa de transporte. El GMP101 tiene una burbuja de nivelación incorporada y se suministra con una punta acoplable (montaje a presión Leica). Con este instrumento se puede medir con una precisión muy alta un punto.

El conjunto GMP101 incluye:

• Mini prisma con placa de objetivo incorporada
• Burbuja niveladora
• Accesorio de punta
• Bolsa de transporte

Información Adicional:
adecuado para pértiga de prisma GLS11 y soporte de prisma GRT144 con montaje a presión Leica (misma altura que GPH1, constante aditiva + 17,5 mm, precisión de centrado 1 mm, alcance 2000 m).

0 Comments
Etiquetas:
septiembre 2, 2020

Leica GS18 I

El nuevo Leica GS18 I, es un móvil GNSS RTK versátil de calidad topográfica con Posicionamiento mediante Imágenes. Diseñado para que los profesionales del ámbito de la topografía midan de forma fácil y precisa puntos que antes no era posible medir con un equipo móvil GNSS. Ahora puedes realizar una captura rápida del lugar con imágenes para, después, medir los puntos a partir de ellas, ya sea en campo o más tarde en oficina.

La fusión de sensores GNSS, IMU y una cámara se unen para crear la Tecnología de Posicionamiento Visual, lo que da lugar a un móvil GNSS RTK tan potente, que permite medir lo que ve. El GS18 I tiene todas las funciones del Leica GS18 T: además del posicionamiento visual, los usuarios pueden por ejemplo medir puntos con el bastón inclinado o nivelado.

* Mida puntos de manera más eficiente y sencilla.
* Capture puntos que antes no podía alcanzar con una antena GNSS.
* Obtenga más flexibilidad y control, sin necesidad de utilizar equipos adicionales que consumen mucho tiempo.
* Mapee cientos de puntos con precisión de nivel topográfico en cuestión de minutos.
* Capture la escena rápidamente y decida más tarde qué se debe medir, incluso si la escena cambia o desaparece posteriormente.
* Toque una imagen para medir un punto en el campo o en la oficina.
* Rápido y completo para captar cada detalle.

Innovador

GS18 I es un GNSS RTK Rover preciso y fácil de usar. Utiliza una tecnología de posicionamiento visual altamente innovadora basada en la integración perfecta de GNSS, IMU y una cámara. Te permite medir puntos con precisión topográfica a partir de imágenes, ya sea en el campo o en la oficina. También puedes crear nubes de puntos a partir de imágenes capturadas utilizando Leica Infinity para aumentar aún más las posibilidades.

Rápido

Diseñado para medir un gran número de puntos de manera eficiente, el GS18 I permite capturar imágenes y medir cientos de puntos en cuestión de minutos sin necesidad de llegar físicamente al punto. El tiempo invertido en las visitas al sitio se reducen al mínimo, una vez hecha la captura de ese sitio puedes medir todos los detalles cuando quieras.

Versátil

El poder de la imagen ha cambiado las reglas del juego. Al tener la posibilidad de medir lo que se ve, ahora es posible llegar a lugares a los que antes no se podía sin necesidad de utilizar herramientas o superar y sortear obstáculos. Esto ofrece flexibilidad en campo, libera de trabajo a los equipos y operarios, aumenta al máximo la productividad y en consecuencia incrementa los beneficios.

Software de Oficina y Campo

Captura y mide en campo con el móvil GS18 I RTK utilizando el software Leica Captivate. La facilidad de uso hace que la captura y gestión de datos sea clara y precisa.

Utilice Captivate para capturar y procesar datos en el campo, e Infinity para medir puntos en la oficina cómodamente en una pantalla más grande y sin perturbaciones por el clima o el tráfico. El software de topografía Infinity está diseñado para administrar, procesar, analizar y verificar la calidad de todos los datos de levantamiento en campo a partir de sensores GNSS, estaciones totales, niveles digitales y UAV.





Auscultación de Estructuras Dañadas – Puente Linton

Challenge

In 2015, Storm Eva – measuring 84mph – hit West Yorkshire. This caused massive power cuts and major flooding in the area. During the aftermath, cracks appeared on the carriageway of the historic Grade II listed Linton Bridge and there was visible damage to the parapets. Bridge deck settlement was also apparent.

BMM JV (a BAM Nuttall and Mott MacDonald joint venture) were contracted to investigate the flood damage, protect the structure from further damage and design the repairs in partnership with Leeds City Council. Due to safety issues and cost, it was proving difficult to find a way to continuously and effectively monitor the movement of the bridge manually.

Solution

Mott MacDonald contacted Senceive, as it was aware of its wireless capabilities to monitor settlement of the bridge remotely to sub 1mm resolution. The stable and robust monitoring system was installed by the BAM team within three hours. Ten high precision tilt sensors, mounted on beams, were mounted on each parapet wall.

The FlatMesh wireless sensors communicated data to a solar 3G gateway, allowing the monitoring to be completely wire and mains power free. Data was immediately available on the FlatMesh WebMonitor visualisation software. This helped the city council assess the ongoing stability of the bridge without putting anyone at unnecessary risk.

Outcome

Both parapets showed c.4mm of movement over four months. A temporary piling platform was then built on both sides of the bridge; steel tubular piles were installed into the river bed and filled with concrete. As part of the stabilisation works, cracks in the arches were stitched and grout was injected into the ground beneath the south pier. This made the bridge safe to work on and robust enough to carry the construction equipment. The wireless monitoring continued for a further period of approximately 10 months to assess whether there was any further settlement and the system was finally removed 1 year after Storm Eva.

 

0 Comments
julio 14, 2020

¿Qué es una estación total y para qué sirve?

Una estación total es un teodolito con distanciómetro integrado que puede medir ángulos y distancias simultáneamente.

¿Qué diferencia hay entre un teodolito y una estación total?

Un teodolito mide únicamente ángulos horizontales y verticales. A veces se hacen llamar taquímetros porqué mediante una medición angular a una mira graduada podemos calcular distancia mediante cálculo geométrico – trigonométrico. Un teodolito puede ser simplemente mecánico o electrónico. La estación total puede medir ángulos y distancias de manera electrónica y procesar trigonométricamente para darnos, como mínimo, unas coordenadas de posición en el espacio.

Actualmente todas las estaciones totales electrónicas cuentan con un distanciómetro óptico electrónico (EDM) y un medidor electrónico de ángulos, de tal manera que se pueden leer los códigos de barras de las escalas de los círculos horizontal y vertical, desplegándose en forma digital los valores de los ángulos y distancias. La distancia horizontal, la diferencia de alturas y las coordenadas se calculan automáticamente.

Las estaciones totales usadas de Leica Geosystems se emplean con la finalidad de determinar la posición y altura de un punto, o simplemente la posición de este.

 

 

¿Para qué se utiliza una estación total?

  • Aplomado a partir de una altura

Aplomar a partir de una altura o sobre un punto en el terreno, así como revisar una línea vertical de una estructura se puede efectuar con precisión con una sola cara del anteojo, siempre y cuando este describa un plano completamente vertical al girarlo. Este tipo de trabajo requiere que tu estación total de segunda mano se encuentre bien nivelada y reducir la influencia del basculamiento del eje vertical.

 

  • Levantamientos

Cuando se traza la planta de una construcción se determina la posición y altura de un punto de la misma, midiendo ángulos y distancias. El instrumento se coloca sobre un punto referido a un sistema de coordenadas locales. Con fines de orientación, se elige un segundo punto fácil de distinguir después de visarlo con el círculo horizontal puestos a ceros.

 

 

  • Replanteo

Para alinear una construcción, es útil extrapolar los lados de esta, más allá de los límites de la excavación a fin de determinar los perfiles de los límites sobre los cuales se colocan estacas. Durante el proceso de construcción, se pueden amarrar cuerdas o cables a estas, a fin de indicar las posiciones que deberán tener las paredes.

 

  • Reconocimiento automático de objetivos

Las estaciones totales reacondicionadas TCA de Leica Geosystems cuentan con el sistema de reconocimiento de objetivos ATR. Así, su reconocimiento se logra de forma rápida y sencilla. Gracias a esta tecnología es posible efectuar las mediciones automáticamente con ayuda de un ordenador. Entre las aplicaciones prácticas de esta característica consiste en controlar la guía de maquinaria de construcción de forma precisa.

  • Medir distancias que no son accesibles (estaciones totales TCR de Leica Geosystems)

Algunas estaciones totales de segunda mano de Leica Geosystems tienen un distanciómetro con láser que no requiere reflector y que son útiles cuando se quieren medir fronteras, colocar conductos o en mediciones a lo largo de cañadas o rejas.

 

 

¿Cuáles son los tipos de estación total?

En Instop Used Equipment Centre disponemos de los siguientes tipos de estaciones totales usadas:

¿Cuánto cuesta una estación total usada?

Una estación total usada de Leica Geosystems puede costar entre 2.500€ con unas prestaciones más limitadas hasta 30.000€ aquellas con más funcionalidades y tecnología avanzada.

Si quieres saber más sobre nuestras estaciones totales usadas y necesitas asesoramiento y conocer qué modelo se adapta a tus tareas y proyectos puedes consultar a nuestros comerciales y si además requieres de formación, podemos enseñarte a cómo sacar el mejor rendimiento posible a tu equipo topográfico.

Auscultación Base grúa – en obra Estación Whitechapel

Challenge

BBMV – Balfour Beatty, Morgan Sindall, VINCI Construction – were awarded the Whitechapel main station contract which is part of the Crossrail project, the largest infrastructure scheme in Europe. As part of the tunnelling construction works at the new Whitechapel station, which is being built for the Elizabeth line, the cutting ran directly underneath two tower cranes. Tower crane TC1 was at track level between the platforms on the Whitechapel Underground station. This was approximately 5m below ground level. Tower crane TC2’s base was at ground level. Both cranes were erected in June 2014.

BBMV wanted to monitor the crane bases throughout the project in order to detect any movement without compromising safety, as this was an extremely busy construction site.

After a successful procurement process, Senceive were selected to come on board to monitor the two tower crane bases using their high precision FlatMesh™ tilt sensor nodes.

Solution

Monitoring was required for a duration of at least 18 months starting mid-July 2014. On each crane a node was attached to the concrete base and another was attached using Senceive’s patented magnetic mountings on the crane uprights.

The FlatMesh™ tilt sensors were an ideal choice, as they are completely wire and mains power free, eliminating the trip hazard of trailing cables. The data was transmitted via two solar powered gateways and remotely viewable by registered users through Senceive’s WebMonitor visualisation software 24 hours a day. This enabled the highly accurate and reliable data to be displayed clearly on a computer, tablet or smart phone anywhere in the world.

Outcome

The FlatMesh™ tilt sensor nodes were installed quickly and easily and remained in place without issue or failure for 32 months with no replacement or maintenance required. The long battery life gave the system the flexibility to remain installed well past the original planned monitoring period.

Senceive’s systems are continuing to deliver highly stable, reliable and high-quality data and we are proud to be part of one of Europe’s largest infrastructure project.

julio 1, 2020

monitorización geotécnica en excavación

EL RETO

La zona del Parque das Naçoes de Lisboa es producto de la transformación de una antigua zona industrial en el nuevo y cosmopolita distrito de negocios, servicios y ocio. EXEO Office Campus, viene a completar la oferta de oficinas.

El área en la que se implantarán los edificios está en proceso de excavación, y se sitúa junto a la emblemática estación de Oriente, estando rodeada por túneles y vías férreas. Es por ello que se hace imprescindible conocer en todo momento la estabilidad de la zona.

JETsj – Geotecnia Lda, conocida por su capacidad de innovación, decide dar un paso adelante e incorporar el sistema SENCEIVE de monitoreo sin cables, para recopilar todos los datos de la instrumentación de geotécnia.

El sistema debe ser comandado de forma remota y desde una plataforma única.

LA SOLUCIÓN

En una primera fase se han instalado 5 Inclinómetros IPI de 16m de profundidad, con 32 sensores por unidad, sumando un total de 160 unidades. Cada IPI se ha conectado a un Edge Hub, encargado de transmitir los datos de forma autónoma y sin cables. De esta forma se detectará cualquier corrimiento interno del terreno.
Junto a cada IPI se han instalado 3 piezómetros, sumando un total de 15 unidades, conectadas a nodos de cuerda vibrante de 4 canales.
En una segunda fase se instalarán cuatro células de carga y cuatro clinómetros triaxiales. Todos ellos trabajando unidos a la misma red de comunicaciones FlatMesh.

Los nodos funcionan de manera autónoma, mediante una batería interna con autonomía hasta 15 años. La transmisión de datos es sin cables, por método propio Senceive FlatMesh. Los datos, son transmitidos por un módem, a un servidor, para su visualización con el visor WebMonitor.

EL RESULTADO

En todo momento conocemos el comportamiento del terreno, lanzando avisos si llegado el caso nos acercáramos a valores preestablecidos, de forma remota, especialmente interesante durante el reciente periodo de confinamiento por el Covid-19.
El hecho de trabajar sin cables y de forma remota contribuye a economizar en tiempo de campo, y minimizar posibles accidentes, que nos dejaran sin datos.

 

0 Comments
junio 29, 2020

Monitorización de Deformaciones – Túnel Rotherhithe

Challenge

The Thames Tideway Tunnel will provide capture, storage and movement of almost all the sewage and rainwater discharges that currently overflow into the river Thames from central London. The Rotherhithe Tunnel sits in close proximity to the Tideway East shaft site.

CVB (Costain, VINCI Construction Grands Projets and Bachy Soletanche), along with Sixense as their appointed monitoring contractor, required a monitoring system 12 months ahead of impacting works, to provide a sufficient period of baseline monitoring and continuing until any movements associated with the works have ceased.

Access was only allowed during night-time engineering closures that took take place once per week. Another challenge was that the majority of the tunnel lining is tiled and is very delicate and as such, TfL were reluctant to allow fixings into it. Every two weeks a machine, which combines a spinning brush and high pressure hot water jet, runs through the tunnel in order to clean this tunnel lining. Therefore, any system had to be robust enough to survive the twice monthly tunnel cleaning.

Solution

Senceive provided their wireless FlatMesh™ system as a monitoring solution. 74 high precision tilt sensor nodes were installed by Sixense during engineering closures over an 8 week period to monitor any convergence/ divergence during the works.

64 of the nodes were installed directly onto the tunnel lining in 16 arrays of 4 nodes per array. A further 10 nodes were mounted on 3m beams in a vertical shaft. The FlatMesh™ system allowed all the nodes to communicate with each other and measure sub-mm movements for an estimated project duration of 3-5 years.

The data is received by two wall-mounted 3G gateways, positioned and powered at the base and top access chamber of Shaft 3 with the data being relayed and transmitted via an antenna at the top of this shaft. This secure data was then easily sent through the mobile GSM network and accessed by registered users of the Senceive WebMonitor data visualisation software and the client’s own software. The nodes could also be remotely configured to provide near real-time data frequency if required.

Solution

Senceive provided their wireless FlatMesh™ system as a monitoring solution. 74 high precision tilt sensor nodes were installed by Sixense during engineering closures over an 8 week period to monitor any convergence/ divergence during the works.

64 of the nodes were installed directly onto the tunnel lining in 16 arrays of 4 nodes per array. A further 10 nodes were mounted on 3m beams in a vertical shaft. The FlatMesh™ system allowed all the nodes to communicate with each other and measure sub-mm movements for an estimated project duration of 3-5 years.

The data is received by two wall-mounted 3G gateways, positioned and powered at the base and top access chamber of Shaft 3 with the data being relayed and transmitted via an antenna at the top of this shaft. This secure data was then easily sent through the mobile GSM network and accessed by registered users of the Senceive WebMonitor data visualisation software and the client’s own software. The nodes could also be remotely configured to provide near real-time data frequency if required.

Monitorización Dinámica – Parque Eólico Marítimo, Blyth

Challenge

The Blyth Offshore Demonstrator Project is an ambitious project delivered by EDF Energy Renewables, showcasing groundbreaking and experimental construction techniques. It consists of 5 wind turbines with a combined generation capacity of 41.5MW, enough low carbon energy to power 34,000 homes, whilst cutting annual CO2 emissions by 57,600 tonnes.

The turbines make use of a concrete Gravity Based Foundation (GBF) for support, which were constructed by BAM using a technique called Float & Submerge, where they were constructed on land, floated down a river and submerged to the sea floor.

BAM performed inclination tests to define the exact centre of buoyancy for the GBFs to confirm the stability during tow and installation. A reliable inclination system was needed to demonstrate that they were as stable as the design had predicted they would be during the towing and final submersion. Based upon other successful deployments for BAM, and a reputation for being world leaders in wireless remote condition monitoring, Senceive was asked to provide a solution.

Solution

Two high precision triaxial tilt nodes were positioned around steel platforms on top of each of the GBF’s steel shafted masts, complete with waterproof straight antennae. Senceive’s patented magnetic mounting system allowed the tilt nodes to be quickly installed in any orientation, with each unit having a magnetic pull force of 100Kgs. The BAM team responsible for monitoring the GBFs asked for the two triaxial tilt nodes to be installed at a right angle to each other, which served two purposes: To provide redundancy in the unlikely event of failure or node disturbance and corroboration of the readings.

The nodes were all set to an initial reporting rate of 1 minute for the dry dock testing period (increased to 1 second later on) and trigger levels were preset to alert users via SMS text message. Data was then relayed through each mast’s own Solar 3G Gateway and wirelessly communicated through the FlatMesh network to the Senceive WebMonitor visualisation software, which can be accessed by registered users on any tablet, smart phone or computer worldwide.

Outcome

BAM needed to demonstrate that the built GBFs were as stable as the design had predicted it would be during the towing and final submersion, so monitoring was extended a further month and BAM also requested that the reporting rate be increased to a real-time level of 1 Hz.

The innovative Float & Submerge method used proved highly successful with the only movement shown in the dynamic data being that of the tides. The system had the advantage of swift easy installation and proved its reputation for robustness and reliability in harsh and challenging environments.

0 Comments
junio 29, 2020

Load Monitoring of Struts: RCM

Challenge

June 2018 marked the start of an exciting redevelopment of the prestigious Royal College of Music (RCM) campus, which was first opened in 1882. The large courtyard will be dug out and a new basement and building is planned to go in its place.

Due to the total mass of the building and the depth required to excavate a basement, substantial shoring equipment was required to protect the existing building and ensure the safety of site workers from potential collapse.

Groundforce Shorco’s, one of the world’s leading supplier of trenching and shoring equipment, provided their MP150 and MP250 hydraulic struts which weighed five tonnes. The two MP150 struts and one MP250 strut had load pins which required monitoring to ensure that the correct hydraulic force was exerted to counter balance the pressure from the surrounding soil.

Solution

Senceive provided three wireless Millivolt per Volt nodes, which allowed Load Sensors to be integrated into the FlatMesh™ platform. These, now wireless, sensors measure the pressure exerted on the struts’ load pins during building works.

Data from the nodes is received by a solar 3G gateway, which was mounted on a crane using standard Jubilee clips. The wireless nodes were mounted using our patented magnetic mounts in a matter of minutes.

Image courtesy of Groundforce Shorco

Outcome

A wireless solution was ideal, as it reduced the amount of installation time, which in turn reduces risk and increases safety of both the installer and to the site workers, by giving Groundforce the ability to adjust the hydraulic pumps reactively to a situation. Reporting rates and SMS text alerts could all be remotely adjusted.

The flexibility of the FlatMesh™ system also allow the Millivolt per Volt nodes to be quickly decommissioned and redeployed at a moment’s notice to any of the struts located on site.

“It is always satisfying to know that time and money is being invested in the right product, and even more satisfying to know that it is being supplied and supported by the right people” – Paul McIntosh, Project Team Leader, Groundforce Shorco

0 Comments
junio 29, 2020

Monitoring de superestructura Ferroviaria – Norwich

Challenge

Balfour Beatty on behalf of their client, Norfolk County Council, were contracted to construct £147 million, 20km of dual carriageway called the Norwich Northern Distributor Road (NNDR). This route went very close to Norwich International Airport and joined the Fakenham Road/A1067, north west of Norwich.

As part of the carriageway construction a large structure at Rackheath had to span Network Rail’s line regularly carrying passenger and freight trains between Norwich and Cromer. Due to the close proximity of the construction works to the rail, it was deemed necessary to carry out monitoring of the track bed to ensure no deformation was taking place.

Based upon several successful deployments elsewhere for Balfour Beatty and a pedigree in monitoring many other track bed environments for Network Rail, Senceive were approached to provide their high precision wireless tilt sensors as a monitoring solution. The project started January 2016 and is expected to complete April 2018.

Solution

Senceive proposed monitoring the two rail tracks using 106 wireless triaxial tilt nodes split equally between both the UP line, where sleepers were made from steel, and DOWN line, where the sleepers are mostly made from wood with a few being concrete. The nodes were installed using sacrificial track bed mounting plates on the area of the sleeper immediately off the ballast shoulder, known as the cess, to measure cant and twist of the track bed.

The flat terrain provided ideal conditions for the FlatMesh™ system and data from the wireless mesh network was easily transmitted to two solar 3G gateways. The gateways then used the mobile GSM network to transmit data to a secure cloud server, which could then be viewed by registered users of Senceive’s WebMonitor software.

Movements were detected very early on during monitoring and triggered SMS messages at certain alert levels, which were preconfigured by the customer.

Outcome

The small movements of ±1mm for the UP line and ±5mm for the DOWN line seemed to be fairly regular and were quickly investigated by Senceive’s dedicated customer service and technical team. We worked closely with Balfour Beatty to determine the cause and through careful analysis and site testing, it was proposed that the highly sensitive triaxial tilt nodes were detecting diurnal movement linked to temperature, which varied between the sleeper’s material composition.

It was possible to remove diurnal movement by applying a 24 hour rolling median to the raw displacement data. Therefore, all subsequent movements were easily attributed to rural terrain impacting the stability of the ballast when the occasional train passed by.

 

0 Comments
junio 23, 2020